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Abstract

Let X ⊆ {0, 1}n. The daisy cube Qn(X) is introduced as the subgraph of
Qn induced by the union of the intervals I(x, 0n) over all x ∈ X. Daisy cubes
are partial cubes that include Fibonacci cubes, Lucas cubes, and bipartite
wheels. If u is a vertex of a graph G, then the distance cube polynomial
DG,u(x, y) is introduced as the bivariate polynomial that counts the number
of induced subgraphs isomorphic to Qk at a given distance from the vertex u.
It is proved that if G is a daisy cube, then DG,0n(x, y) = CG(x+y−1), where
CG(x) is the previously investigated cube polynomial of G. It is also proved
that if G is a daisy cube, then DG,u(x,−x) = 1 holds for every vertex u in G.

Keywords: daisy cube; partial cube; cube polynomial; distance cube polynomial;
Fibonacci cube; Lucas cube
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1 Introduction

In this paper we introduce a class of graphs, the members of which will be called
daisy cubes. This new class contains several classes of graphs such as Fibonacci
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cubes [18], Lucas cubes [26, 35], gear graphs (alias bipartite wheels) [16], and of
course hypercubes themselves.

Our main motivation for the introduction of daisy cubes are the recent investi-
gations of Saygı and Eğecioğlu [31, 32] in which they introduced the distance poly-
nomial (alias q-cube polynomial) and studied it on Fibonacci cubes Γn and Lucas
cubes Λn. This is a bivariate counting polynomial that keeps track of the number
of subcubes that are at a given distance from the vertex 0n in Γn (resp. Λn). Many
of the results obtained in [31] and [32] present a refinement of the investigation [19]
of the cube polynomial of Fibonacci cubes and Lucas cube. The latter polynomial
is a counting polynomial of induced cubes in a graph; it was introduced in [3] and
further studied in [4].

We proceed as follows. In the rest of this section we introduce some concepts
and notation needed in this paper. In the next section we formally introduce daisy
cubes, give several examples of them, and deduce some of their basic properties. In
particular, daisy cubes admit isometric embeddings into hypercubes. In Section 3
we introduce the earlier investigated cube polynomial CG(x) of a graph G, and the
distance cube polynomial DG,u(x, y). In the main result of the section (Theorem 3.4)
we prove a somehow surprising fact that the bivariate distance cube polynomial of
an arbitrary daisy cube can be deduced from the univariate cube polynomial. More
precisely, if G is a daisy cube, thenDG,0n(x, y) = CG(x+y−1). Several consequences
of this theorem are also developed. In particular, if G is a daisy cube, then the
polynomials DG,0n and CG are completely determined by the counting polynomial
of the number of vertices at a given distance from the vertex 0n. In the final section
we prove that DG,u(x,−x) = 1 holds for every vertex u of a daisy cube G.

Let B = {0, 1}. If u is a word of length n over B, that is, u = (u1, . . . , un) ∈ Bn,
then we will briefly write u as u1 . . . un. The weight of u ∈ Bn is w(u) =

∑n

i=1 ui, in
other words, w(u) is the number of 1s in word u. We will use the power notation
for the concatenation of bits, for instance 0n = 0 . . . 0 ∈ Bn.

The n-cube Qn has the vertex set Bn, vertices u1 . . . un and v1 . . . vn being adja-
cent if ui 6= vi for exactly one i ∈ [n], where [n] = {1, . . . , n}. The set of all n-cubes is
referred to as hypercubes. A Fibonacci word of length n is a word u = u1 . . . un ∈ Bn

such that ui ·ui+1 = 0 for i ∈ [n−1]. The Fibonacci cube Γn, n ≥ 1, is the subgraph
of Qn induced by the Fibonacci words of length n. A Fibonacci word u1 . . . un is
a Lucas word if in addition u1 · un = 0 holds. The Lucas cube Λn, n ≥ 1, is the
subgraph of Qn induced by the Lucas words of length n. For convenience we also
set Γ0 = K1 = Λ0.

If u and v are vertices of a graph G, the the interval IG(u, v) between u and v (in
G) is the set of vertices lying on shortest u, v-path, that is, IG(u, v) = {w : d(u, v) =
d(u, w)+ d(w, v)}. We will also write I(u, v) when G will be clear from the context.
A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for u, v ∈ V (H).
Isometric subgraphs of hypercubes are called partial cubes. For general properties of
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these graphs we refer to the books [8, Chapter 19] and [27]. See also [1, 7, 22, 23] for a
couple of recent developments on partial cubes and references therein for additional
results. If H is a subgraph of a graph G and u ∈ V (G), then the distance d(u,H)
between u and H is minv∈H(dG(u, v)). Finally, if G = (V (G), E(G)) is a graph and
X ⊆ V (G), then 〈X〉 denotes the subgraph of G induced by X .

2 Examples and basic properties of daisy cubes

Let ≤ be a partial order on Bn defined with u1 . . . un ≤ v1 . . . vn if ui ≤ vi holds for
i ∈ [n]. For X ⊆ Bn we define the graph Qn(X) as the subgraph of Qn with

Qn(X) = 〈{u ∈ Bn : u ≤ x for some x ∈ X}〉

and say that Qn(X) is a daisy cube (generated by X).
Vertex sets of daisy cubes are in extremal combinatorics known as hereditary

or downwards closed sets, see [15, Section 10.2]. For instance, a result of Kleitman
from [17] (cf. [15, Theorem 10.6]) reads as follows: If X, Y ⊆ Bn are hereditary sets,
then |V (Qn(X)) ∩ V (Qn(Y ))| ≥ |V (Qn(X))| · |V (Qn(Y ))|/2n.

Before giving basic properties of daisy cubes let us list some of their important
subclasses.

• If X = {1n}, then Qn(X) = Qn.

• If X = {u1 . . . un : ui · ui+1 = 0, i ∈ [n− 1]}, then Qn(X) = Γn.

• If X = {u1 . . . un : ui ·ui+1 = 0, i ∈ [n−1], and u1 ·un = 0}, then Qn(X) = Λn.

• If X = {110n−2, 0110n−3, . . . , 0n−211, 10n−11}, then Qn(X) = BWn the bipar-
tite wheel also known as a gear graph.

• If X = {u : w(u) ≤ n− 1}, then Qn(X) = Q−
n the vertex-deleted cube.

The above example which gives an equivalent description of Fibonaci cubes Γn

can be rephrased by saying that X contains all words that do not contain the
subword 11. This can be generalized by defining Xk, k ≥ 2, as the set of words that
do not contain 1k. In this way more daisy cubes are obtained; in [21] these graphs
were named generalized Fibonacci cubes. Today, the term “generalized Fibonacci
cubes” is used for a much larger class of graphs as introduced in [13], see also [36]
for an investigation of which generalized Fibonacci cubes are partial cubes.

Note that if x, y ∈ X and y ≤ x, then Qn(X) = Qn(X \ {y}). More generally,

if X̂ is the antichain consisting of the maximal elements of the poset (X,≤), then

Qn(X̂) = Qn(X). Hence, for a given set X ⊆ Bn it is enough to consider the

antichain X̂; we call the vertices of Qn(X) from X̂ the maximal vertices of Qn(X).
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For instance, let X = {u ∈ Bn : w(u) ≤ k}. Then the maximal vertices of Qn(X)
are the vertices u with w(u) = k. In particular, the vertex-deleted n-cube Q−

n can
then be represented as

Q−
n = Qn({u : w(u) = n− 1}) .

If vertices u, v ∈ V (Qn(X)) differ in k coordinates, then it is straightforward to
construct a u, v-path in Qn(X) of length k. This immediately implies:

Proposition 2.1 If X ⊆ Bn, then Qn(X) is a partial cube.

The isometric dimension idim(G) of a partial cube G is the least integer n for
which G embeds isometrically into Qn. For an equivalent description of idim(G)
recall that edges e = xy and f = uv of a graph G are in the relation Θ if d(x, u) +
d(y, v) 6= d(x, v)+d(y, u). From [9, 37] we know that a connected graph G is a partial
cube if and only if G is bipartite and Θ is a transitive relation. Now, idim(G) is the
number of Θ-classes of G.

Another classical characterization of partial cubes is due to Chepoi: A graph
G is a partial cube if and only if G can be obtained from the one vertex graph
by a sequence of expansions [6]. To explain the result, let G1 and G2 be isometric
subgraphs of G and let G0 = G1 ∩G2 6= ∅. Then the expansion H of G with respect
to G1 and G2 is the graph obtained from the disjoint union of G1 and G2 by adding
a matching between corresponding vertices in the two resulting copies of G0. The
inverse operation of an expansion in partial cubes is called contraction. In other
words, a contraction of a partial cube is obtained by contracting the edges of a
given Θ-class.

After this preparation we can state two additional basic properties of daisy cubes.

Proposition 2.2 If G = Qn(X) is a daisy cube, then idim(G) = deg(0n) and a
contraction of G is a daisy cube.

Proof. Edges incident to a fixed vertex of G lie in different Θ-classes. Hence
idim(G) ≥ deg(0n). On the other hand, if the end-vertices of an edge e ∈ E(G)
differ in coordinate i, then e is in relation Θ with the edge between 0n and 0i−110n−i.
Thus idim(G) ≤ deg(0n).

Without loss of generality consider the contraction of G with respect to the Θ-
class containing the edge between 0n and 10n−1. Then every edge of G between
vertices 0w and 1w (where w ∈ {0, 1}n−1) is contracted to the vertex w, while any
other vertex u1u2 . . . un of G is in the contraction replaced by the vertex u2 . . . un.
It is now straightforward to conclude that the contraction is a daisy cube. �

The following observation will be important for our later studies.
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Lemma 2.3 Let X ⊆ Bn. Then

Qn(X) =

〈
⋃

x∈X̂

IQn
(x, 0n)

〉
.

Proof. Let u ∈ V (Qn(X)). We have already observed that Qn(X̂) = Qn(X), hence

there exists a vertex x ∈ X̂ such that u ≤ x. Then u ∈ IQn
(x, 0n) and therefore

V (Qn(X)) = V (Qn(X̂)) ⊆ ∪x∈X̂IQn
(x, 0n). Conversely, let u ∈

⋃
x∈X̂ IQn

(x, 0n).

Then there exists a fixed vertex x ∈ X̂ such that u ∈ IQn
(x, 0n). But then u ≤ x

and consequently u ∈ V (Qn(X)) so that ∪
x∈X̂IQn

(x, 0n) ⊆ V (Qn(X)). �

Lemma 2.3 is illustrated in Fig. 1. The figure also gives a clue why the name
daisy cubes was selected.

0n

1n

Qn

∈ X̂

∈ X̂

∈ X̂

∈ X̂

Figure 1: A daisy cube

3 Distance cube polynomial

Before introducing the cube polynomial and the distance cube polynomial we recall
the Cartesian product operation and describe a structure of hypercubes in products.

The Cartesian product G�H of graphs G and H has the vertex set V (G)×V (H)
and E(G�H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and h = h′, or, g = g′ and hh′ ∈
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E(H)}. If (g, h) ∈ V (G�H), then the G-layer Gh through the vertex (g, h) is
the subgraph of G�H induced by the vertices {(g′, h) : g′ ∈ V (G)}. Similarly,
the H-layer gH through (g, h) is the subgraph of G�H induced by the vertices
{(g, h′) : h′ ∈ V (H)}. With pG and pH we denote projection maps from G�H
onto the factors G and H , respectively.

Lemma 3.1 If Q = Qd is a subgraph of G�H, then for some k ∈ [d− 1] we have
pG(Q) = Qk, pH(Q) = Qd−k, and hence Q = pG(Q)� pH(Q).

Proof. Let (g, h) ∈ V (Q) and let (g1, h), . . . , (gk, h) and (g, h1), . . . , (g, hd−k) be
the neighbors of (g, h) in Q. Since the vertices (g, h), (g1, h), and (g2, h) lie in a
unique square of Q, the fourth vertex of this square must lie in Gh. Inductively
applying this argument while having in mind the structure of Q we infer that the
vertices (g, h), (g1, h), . . . , (gk, h) force an induced Qk in the layer Gh, denote it
with Q′. Similarly, the vertices (g, h), (g, h1), . . . , (g, hd−k) force an induced Qd−k

in the layer gH , denote it with Q′′. Now, if e ∈ E(Q′) and f ∈ E(Q′′) are two
incident edges, then there exists exactly one square in G�H containing e and f
and this square has no diagonals. (This fact is the so-called unique square property
of the Cartesian product, see [12, Lemma 6.3].) Clearly, this square must lie in Q.
Applying this argument for each pair of incident edges from Q′ and Q′′ we conclude
that Q = pG(Q)� pH(Q). �

For a graph G let ck(G), k ≥ 0, be the number of induced subgraphs of G
isomorphic to Qk, so that c0(G) = |V (G)|, c1(G) = |E(G)|, and c2(G) is the number
of induced 4-cycles. The cube polynomial, CG(x), of G, is the corresponding counting
polynomial, that is, the generating function

CG(x) =
∑

k≥0

ck(G)xk .

Since CK2
(x) = 2+x and Qn is the Cartesian product of n copies of K2, Lemma 3.1

yields:
CQn

(x) = (2 + x)n . (1)

In [31] a q-analogue of the cube polynomial of Fibonacci cubes Γn is considered
with the remarkable property that this q-analogue counts the number of induced
subgraphs isomorphic to Qk at a given distance from the vertex 0n. (For related
recent investigations on the number of disjoint hypercubes in Fibonacci cubes see [11,
24, 30].) We now introduce a generalization of this concept to arbitrary graphs as
follows.

Definition 3.2 If u is a vertex of a graph G, then let ck,d(G), k, d ≥ 0, be the
number of induced subgraphs of G isomorphic to Qk at distance d from u. The
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distance cube polynomial of G with respect to u is

DG,u(x, y) =
∑

k,d≥0

ck,d(G)xkyd .

For the later use we note that

DG,u(x, 1) = CG(x) . (2)

We also point out that if G is vertex-transitive, then DG,u(x, y) is independent of u.
Moreover, Lemma 3.1 implies:

Proposition 3.3 If G and H are graphs and (g, h) ∈ V (G�H), then

DG2H,(g,h)(x, y) = DG,g(x, y)DH,h(x, y) .

An immediate consequence of Proposition 3.3 is that if u ∈ V (Qn), then

DQn,u(x, y) = DQn,0n(x, y) = (1 + x+ y)n , (3)

a result earlier obtained in [31].
We also point out that the class of daisy cubes is closed under the Cartesian

product, a fact which further extends the richness of the class of daisy cubes.
Let H be an induced hypercube of Qn. Then it is well-known that there exists

a unique vertex of H with maximum weight, we will call it the top vertex of H and
denote it with t(H). Similarly, H contains a unique vertex with minimum weight to
be called the base vertex of H and denoted b(H). Furthermore H = 〈I(b(H), t(H))〉.

We are now ready for the main result of this section.

Theorem 3.4 If G is a daisy cube, then DG,0n(x, y) = CG(x+ y − 1).

Proof. Let G = Qn(X) and X̂ = {x1, . . . , xp} be the maximal vertices of G. We
thus have V (G) =

⋃
i∈[p] I(0

n, xi).

An induced k-cube H of Qn is an induced k-cube of G if and only if t(H) ∈ V (G).
Similarly an induced k-cube H of Qn is an induced k-cube of 〈I(0n, x)〉 if and only
if t(H) ∈ I(0n, x).

For any k-cube H of Qn and any subset T of V (Qn) let 1H(T ) = 1 if t(H) ∈ T ,
and 1H(T ) = 0 otherwise. Let Hk,d be the set of induced k-cubes of Qn that are
at distance d from 0n, and let Hk be the set of induced k-cubes of Qn. Using this
notation we have

DG,0n(x, y) =
∑

k

∑

d

∑

H∈Hk,d

1H(V (G))xkyd (4)
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and
CG(z) =

∑

k

∑

H∈Hk

1H(V (G))zk . (5)

By the inclusion-exclusion principle for the union of sets A1, . . . , Ap we thus have1H(
⋃

i∈[p]

Ai) =
∑

J⊂[p],J 6=∅

(−1)|J |−11H(
⋂

i∈J

Ai) .

Therefore,1H(V (G)) = 1H(
⋃

i∈[p]

I(0n, xi)) =
∑

J⊂[p],J 6=∅

(−1)|J |−11H(
⋂

i∈J

I(0n, xi)) .

Changing the order of summation in (4) and (5) we obtain

DG,0n(x, y) =
∑

J⊂[p],J 6=∅

(−1)|J |−1D〈
⋂

i∈J I(0n,xi)〉,0n(x, y)

and
CG(z) =

∑

J⊂[p],J 6=∅

(−1)|J |−1C〈
⋂

i∈J I(0n,xi)〉(z) .

Note that for arbitrary vertices u, v of Qn we have I(0n, u)∩ I(0n, v) = I(0n, u∧ v),
where (u ∧ v)i = 1 if and only if ui = 1 and vi = 1. The same property extends to
the intersection of an arbitrary number of intervals. So

⋂
i∈J I(0

n, xi) is an interval
that induces a hypercube with base vertex 0n. From (1) and (3) we see that the
asserted result of the theorem holds if G is an induced hypercube with base vertex
0n. Therefore,

D〈
⋂

i∈J I(0n,xi)〉,0n(x, y) = C〈
⋂

i∈J I(0n,xi)〉(x+ y − 1)

and we are done. �

Theorem 3.4 has the following immediate consequence.

Corollary 3.5 If G is a daisy cube, then DG,0n(x, y) = DG,0n(y, x).

This corollary in other words says that for any integers k, d the number of induced
k-cubes at distance d from 0n in a daisy cube G is equal to the number of induced
d-cubes at distance k from 0n.

To obtain another consequence of Theorem 3.4 we introduce the counting poly-
nomial of the number of vertices at a given distance from a vertex u as follows.
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Definition 3.6 If u is a vertex of a graph G, then let wd(G), d ≥ 0, be the number
of vertices of G at distance d from u. Then set

WG,u(x) =
∑

d≥0

wd(G)xd .

With this definition in hand we can state the following important consequence
of Theorem 3.4.

Corollary 3.7 If G is a daisy cube, then

DG,0n(x, y) = WG,0n(x+ y) and CG(x) = WG,0n(x+ 1) .

Proof. From Theorem 3.4 we get CG(x) = DG,0n(0, x+ 1). Since by the definition
of the polynomials DG,0n(0, x) = WG,0n(x) holds, and consequently DG,0n(0, x+1) =
WG,0n(x+ 1), we conclude that CG(x) = WG,0n(x+ 1).

Using Theorem 3.4 again and the already proved second assertion of the corollary
we get the first assertion: DG,0n(x, y) = CG(x+ y − 1) = WG,0n(x+ y). �

So if G is a daisy cube, then the polynomials DG,0n and CG are completely
determined by WG,0n .

Consider first the hypercube Qn. Since the number of vertices of weight k in Qn

is
(
n

k

)
, we have WQn,0n(x) = (1 + x)n. Hence from Corollary 3.7 we obtain again

CQn
(x) = (2 + x)n and DQn,0n(x, y) = (1 + x+ y)n.
For the Fibonacci cube Γn it is well-known that the number of vertices at distance

k from 0n is
(
n−k+1

k

)
. Therefore WΓn,0n(x) =

∑⌊n+1

2 ⌋
k=0

(
n−k+1

k

)
xk and we deduce that

CΓn
(x) =

⌊n+1

2 ⌋∑

k=0

(
n− k + 1

k

)
(1 + x)k ,

a result first proved in [19, Theorem 3.2] and that

DΓn,0n(x, y) =

⌊n+1

2 ⌋∑

a=0

(
n− a + 1

a

)
(x+ y)a

=

⌊n+1

2 ⌋∑

k=0

⌊n+1

2 ⌋∑

d=0

(
n− k − d+ 1

k + d

)(
k + d

d

)
xkyd ,

a result obtained in [31, Proposition 3].
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For the Lucas cube Λn we have WΛn,0n(x) =
∑⌊n

2 ⌋
k=0

[
2
(
n−k

k

)
−
(
n−k−1

k

)]
xk. There-

fore,

CΛn
(x) =

⌊n
2 ⌋∑

k=0

[
2

(
n− k

k

)
−

(
n− k − 1

k

)]
(1 + x)k ,

which is [19, Theorem 5.2]. We note in passing that in [19, Theorem 5.2] and
[19, Corollary 5.3] there is a typo stating

(
n−k+1

k

)
instead of

(
n−k−1

k

)
. Moreover,

Corollary 3.7 also gives that

DΛn,0n(x, y) =

⌊n
2 ⌋∑

k=0

[
2

(
n− k

k

)
−

(
n− k − 1

k

)]
(x+ y)k .

.

4 A tree-like equality for daisy cubes

If G is a daisy cube, then the values of DG,u(x, y) and WG,u(x, y) depend on the
choice of the vertex u. We demonstrate this on the vertex-deleted 3-cube Q−

3 .
Q−

3 contains three orbits under the action of its automorphism group on the
vertex set. Consider their representatives 000, 100, and 110, for which we have the
following polynomials:

• WQ−

3
,000(x) = 1 + 3x+ 3x2,

DQ−

3
,000(x, y) = 1 + 3y + 3y2 + 3x+ 6xy + 3x2;

• WQ−

3
,100(x) = 1 + 3x+ 2x2 + x3,

DQ−

3
,100(x, y) = 1 + 3y + 2y2 + y3 + x(3 + 4y + 2y2) + x2(2 + y);

• WQ−

3
,110(x) = 1 + 2x+ 3x2 + x3,

DQ−

3
,110(x, y) = 1 + 2y + 3y2 + y3 + x(2 + 4y + 3y2) + x2(1 + 2y).

Note that DQ−

3
,u(y, x) 6= DQ−

3
,u(x, y) except for u = 0n. In addition, there is no

obvious relation between DQ−

3
,u and WQ−

3
,u. On the other hand, CQ−

3
(x) = 7+ 9x+

3x2, and we observe that DQ−

3
,u(x,−x) = CQ−

3
(−1) = 1 holds for any vertex u.

Recall that a connected graph G is median if |I(u, v) ∩ I(u, w) ∩ I(v, w)| = 1
holds for any triple of vertices u, v, and w of G. It is well-known that median graphs
are partial cubes, cf. [20, Theorem 2]. Soltan and Chepoi [34] and independently
Škrekovski [33] proved that if G is a median graph then CG(−1) = 1. This equality
in particular generalizes the fact that n(T ) −m(T ) = 1 holds for a tree T . Hence
if a daisy cube G is median (say a Fibonacci cube), then by Theorem 3.4 we have
DG,0n(x,−x) = 1. Our next result (to be proved in the rest of the section) asserts
that this equality holds for every daisy cube and every vertex.
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Theorem 4.1 If G is a daisy cube, then DG,u(x,−x) = 1 holds for every vertex u
in G.

The following consequence extends the class of partial cubesG for which CG(−1) =
1 holds.

Corollary 4.2 If G is a daisy cube, then CG(−1) = 1.

Proof. By Theorem 3.4 we have CG(−1) = DG,0n(x,−x). Theorem 4.1 completes
the argument. �

In the rest the following concept from [10] (see also [5]) will be useful. A subgraph
H of a graph G is called gated if for every u ∈ V (G), there exists a vertex x ∈ V (H)
such that for every v ∈ V (H) the vertex x lies on a shortest u, v-path. If such a
vertex exists, it must be unique and is denoted πH(u). For us it is important that
sub-hypercubes in partial cubes are gated, cf. [29, p. 2122]. (We note in passing
that Berrachedi [2] characterized median graphs as the connected graphs G in which
intervals induce gated subgraphs.)

Recall that if u, v ∈ V (Qn), then u∧ v is the vertex with (u∧ v)i = 1 if and only
if ui = 1 and vi = 1. The following fact is straightforward.

Lemma 4.3 If u and v are vertices of Qn and G = 〈I(0n, v)〉, then πG(u) = u ∧ v.

Lemma 4.4 Let c ∈ V (Qn) and let u be a vertex from I(0n, c). Then for any vertex
b of Qn we have π〈I(0n,c)∩I(0n,b)〉(u) = π〈I(0n,b)〉(u).

Proof. Since u belongs to I(0n, c) we have u ∧ c = u and I(0n, c) ∩ I(0n, b) =
I(0n, c ∧ b). Therefore, having in mind Lemma 4.3,

π〈I(0n,c)∩I(0n,b)〉(u) = π〈I(0n,c∧b)〉(u)

= u ∧ c ∧ b = u ∧ b

= π〈I(0n,b)〉(u).

�

Let u be vertex of Qn and let G be a fixed subgraph of Qn. Then we can
naturally extend the definition of the distance cube polynomial DG,u(x, y) also to
the case when u /∈ V (G). Note that in order that DG,u(x, y) is well-defined in such
a case, together with u and G we also need the embedding of G into Qn.

Lemma 4.5 If u, b ∈ V (Qn) and G = 〈I(0n, b)〉, then

DG,u(x,−x) = (−x)d(u,G) .
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Proof. The contribution of some induced k-cubeH ofG to the polynomialDG,u(x, y)
is xkyδ where δ = d(u,H). Because intervals are gated in median graphs and hence
in hypercubes, see [20, Theorem 6(vi)], we have

δ = d(u, πG(u)) + d(πG(u), H) .

Therefore DG,u(x, y) = yd(u,G)DG,πG(u)(x, y). Since G is a hypercube, thus a vertex-
transitive graph, and πG(u) belongs to G, we have

DG,πG(u)(x,−x) = DG,0n(x,−x) = 1 .

We conclude that DG,u(x,−x) = (−x)d(u,G). �

Proof (of Theorem 4.1). Assume that G = Qn(X̂) with X̂ = {xi, i ∈ I} thus
V (G) =

⋃
i∈I I(0

n, xi). By inclusion-exclusion formula,

DG,u(x,−x) =
∑

J⊂I,J 6=∅

(−1)|J |−1D〈
⋂

i∈J I(0n,xi)〉,u(x,−x). (6)

Since
⋂

i∈J I(0
n, xi) is some interval I(0n, bJ ), Lemma 4.5 implies that

D〈
⋂

i∈J I(0n,xi)〉,u(x,−x) = (−x)d(u,〈
⋂

i∈J I(0n,xi))〉 .

Let i0 ∈ I such that u belong to I(0n, xi0) and let I ′ = I \ {i0}. For every subset
J ′ of I ′ consider the pair {J ′, J ′ ∪ {i0}}. We obtain the following partition of the
power set P(I)

P(I) =
⋃

J ′⊂I′

{J ′ ∪ (J ′ ∪ {i0})}.

If J ′ is not empty then by Lemmas 4.3 and 4.4 we have

d(u,
〈
∩i∈J ′∪{i0}I(0

n, xi)
〉
) = d(u, 〈∩i∈J ′I(0n, xi)〉) ,

and since |J ′ ∪ {i0}| = |J ′| + 1, the sum of contribution in equation (6) of J ′ and
J ′ ∪ {i0} to DG,u(x,−x) is null. Therefore the only term remaining corresponds to

the pair {∅, {i0}}. Thus DG,u(x,−x) = (−x)d(u,〈I(0
n,xi0

)〉) = 1. �

5 Concluding remarks

In this paper we have introduced daisy cubes and showed that they possess some
appealing properties. Further investigation of the structure of daisy cubes would be
in place and seems interesting. We pose here some related open problems.

As already mentioned, Chepoi [6] characterized partial cubes as the graphs ob-
tainable from K1 by a sequence of expansions. Such a characterization was ealier
done for the case of median graphs in [25] and later for different additional subclasses
of partial cubes, cf. [7, 14, 28, 29].

12



Problem 5.1 Do daisy cubes admit a characterization in terms of an expansion
procedure?

A positive answer to the next question would yield another characterization of
daisy cubes.

Problem 5.2 Does the converse of Theorem 3.4 hold?

Similarly, we also ask:

Problem 5.3 Does the second equality of Corollary 3.7 implies that G is a daisy
cubes, that is, are daisy cubes characterized by this equality?
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